The symmetric group and Brauer algebras
نویسنده
چکیده
منابع مشابه
Characters of Brauer's Centralizer Algebras
Brauer's centralizer algebras are finite dimensional algebras with a distinguished basis. Each Brauer centralizer algebra contains the group algebra of a symmetric group as a subalgebra and the distinguished basis of the Brauer algebra contains the permutations as a subset. In view of this containment it is desirable to generalize as many known facts concerning the group algebra of the symmetri...
متن کاملDerived equivalence of symmetric special biserial algebras
We introduce Brauer complex of symmetric SB-algebra, and reformulate in terms of Brauer complex the so far known invariants of stable and derived equivalence of symmetric SB-algebras. In particular, the genus of Brauer complex turns out to be invariant under derived equivalence. We study transformations of Brauer complexes which preserve class of derived equivalence. Additionally, we establish ...
متن کاملTraces on Infinite - Dimensional Brauer Algebras ∗
We describe the central measures for the random walk on graded graphs. Using this description , we obtain the list of all finite traces on three infinite-dimensional algebras: on the Brauer algebra, on the partition algebra, and on the walled Brauer algebra. For the first two algebras, these lists coincide with the list of all finite traces of the infinite symmetric group. For the walled Brauer...
متن کاملBraid action on derived category of Nakayama algebras
We construct an action of a braid group associated to a complete graph on the derived category of a certain symmetric Nakayama algebra which is also a Brauer star algebra with no exceptional vertex. We connect this action with the affine braid group action on Brauer star algebras defined by Schaps and Zakay-Illouz. We show that for Brauer star algebras with no exceptional vertex, the action is ...
متن کاملSpecht modules and semisimplicity criteria for Brauer and Birman–Murakami–Wenzl algebras
A construction of bases for cell modules of the Birman–Murakami–Wenzl (or B–M–W) algebra Bn(q, r) by lifting bases for cell modules of Bn−1(q, r) is given. By iterating this procedure, we produce cellular bases for B–M–W algebras on which a large Abelian subalgebra, generated by elements which generalise the Jucys–Murphy elements from the representation theory of the Iwahori–Hecke algebra of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005